2022 年第 3 届全国高校教师教学 元宇宙数字化技术创新大赛

竞赛办法

全国三维数字化创新设计大赛组委会 2022 年 04 月 18 日

1. 大赛背景

为深入学习贯彻全国教育大会精神和《中国教育现代化 2035》,全面落实新时代全国高等学校教育工作会议精神,坚持立德树人根本任务,以"新工科、新农科、新医科、新文科"建设为工作主线,抓教师、促教学,全力推进高等教育"质量革命",引导高校加强教师教学发展中心建设,全面开展教师教学能力提升培训,以教学理念、教学技术和方法、教学内容改革为重点,进一步推动现代信息技术、数字技术在教学中的应用,全国三维数字化创新设计大赛组委会决定举办 2022 年第三届全国高校教师教学元宇宙数字化技术创新大赛(以下简称:教师教学创新大赛)。

2. 组织机构

(一) 主办单位

全国三维数字化创新设计大赛组委会

(二) 承办单位

国家制造业信息化培训中心 3D 办

(三) 协办单位

各赛区组委会

(四)技术支持单位

清华数为、上海影创信息科技有限公司、天津微深科技有限公司、POP2

(五)组织机构

大赛设立组委会、大赛办公室、专家委员会及各赛区组委会。组委会是大赛的领导机构,负责大赛的组织和决策;专家委员会负责审定比赛内容、竞赛方式、赛事规则,负责组织大赛的评审工作;大赛办公室负责大赛的具体实施工作;各赛区组委会负责与大赛组委会共同执行赛事。

3. 赛项设置

赛项代码	赛项方向	任务内容
T1	3D 设计与 3D 打印教学创 新应用	3D 扫描、逆向工程、3D 检测、再创新设计、3D 打印等全流程项目实操应用
Т2	MR 混合现实教学设计与 创新能力应用	专业课程设计/实训实践场景设计、MR 混合现实课程资源制作、MR 混合现实交互制作、MR 项目发布等课程实操应用

Т3	科研项目/行业应用的 3D/XR 数字化虚拟仿真开 发与应用	3D/XR 数字化虚拟仿真项目开发与应用、 VR/AR/MR 软/硬件交互系统与平台项目 创新应用、VR/AR/MR 产品/设备项目开发 应用
T4	3D/XR 新零售电商创新创业教学创新应用	新零售·新设计·新制造模式下创意/创造/创新/创业团队项目发布与协同应用3D时尚设计·个性爆品、师生保荐各地特产、原创定制·DesignStore
T5	工业互联网与大数据教学 创新应用	大数据采集、数据挖掘分析与决策、工业 应用结合/设备物联、工业过程监控管理、 工业互联网、工业大数据与 3D 可视化应 用展示
Т6	工业 3D 视觉+智能制造教 学创新应用	以高精度 3D 视觉技术助力智能制造为核心应用,推动产品创新、技术创新和商业模式创新(包括:工业在线检测、高精度2D/3D 融合测量、深度测量与深度学习融合、智能产线应用等)

4. 奖项设置

- 4.1. 各赛项分别设置一等奖、二等奖和三等奖。
- 4.2. 根据参赛单位组织及获奖情况综合排名,颁发大赛"优秀教师奖" "优秀组织奖"。

5. 参赛对象

- 5.1. 高等学校(本科院校、专科院校和专门学院)在职教师,以学校 为单位组织参赛,同一赛项方向每校限报5个团队(3-5人/团队), 同一教师最多报名参加3个团队,要求团队独立完成赛项的设计 和实施。
- 5.2. 大赛分设本科组和高职组。

6. 校内初赛选拔

6.1. 鼓励各高校组织校内初赛选拔,作为提高教师队伍 3D/XR 数字化虚拟仿真教学创新与工程应用技术能力、推进课堂教学与实验实践教学 3D/XR 数字化虚拟仿真改革创新实践探索的重要工作抓手,以赛促教、以赛促研、以赛促创、以赛促产,深化产教融合创新发展。

6.2. 校内初赛选拔由参赛院校自行组织。

7. 参赛报名、项目报告提交与赛区选拔

- 7.1. 经参赛院校校内初赛选拔推荐,代表院校参加赛区选拔的团队,须登录大赛官网 http://3dvr.3ddl.net 进行赛项报名并提交参赛报名表。报名截止时间为 2022 年 6 月 30 日。
- 7.2. 每所院校可以报名参加多个赛项,同一赛项每校限报5个团队(3-5人/团队),同一教师最多报名参加3个团队。
- 7.3. 参加赛区选拔的参赛团队,须在官网 http://3dvr.3ddl.net 在线 提交参赛项目报告。参赛项目报告提交截止时间为 2022 年 7 月 31 日。
- 7.4. 项目报告应在官网 http://3dvr.3ddl.net 按提示要求将作品 3D 数据上传至数字工坊并进行 3DShow 教学应用展示;项目报告原件及其附件原数据资料、工程源文件等上传至百度云盘,并将云盘地址及提取密码等按要求在官网提交。

地址入灰水石与子放文水石与内灰久。			
序号	赛项	项目报告要求	
T1	3D 设计与 3D 打印教学创新应用	 面向课程/专业/实践教学或行业专业应用的 3D 扫描、逆向工程、再创新设计、3D 打印、3D 检测等三维数字化全流程项目实操参赛报告。 报告内容应包括项目背景与准备,全流程实操记录,过程重要节点关键数据,结果与报告,分析与点评、教学创新应用等。 报告形式不限,包括但不限于文字、图片、图表、视频、数据/数字模型/程序代码等。 	
Т2	MR 混合现实教学 设计与创新能力 应用	 面向专业课程设计、MR课程资源制作、MR交互制作、MR发布等的参赛教学课件。 报告内容应包括项目背景、原理流程、项目开发过程、关键数据、创新点难点、项目成果介绍演示、应用情况、评价分析、教学创新应用等。 报告形式不限,包括但不限于文字、图片、图表、视频、数据/数字模型/程序代码等。 	
Т3	科研项目/行业 应用的 3D/XR 数 字化虚拟仿真开 发与应用	● 3D/VR/AR 数字化虚拟仿真项目开发与应用、VR/AR 软/硬件交互系统与平台项目创新应用、VR/AR 产品/设备项目开发应用等的参赛项目报告。 ● 报告内容应包括项目背景、原理流程、项目开发过程、关键数据、创新点难点、项目成果介绍演示、	

		应用情况、评价分析、教学创新应用等。 ● 报告形式不限,包括但不限于文字、图片、图表、 视频、数据/数字模型/程序代码等。
T4	3D/VR 新零售电 商创新创业应用	 新零售。新设计。新制造模式下创意/创造/创新/创业团队项目发布与协同应用(包括: 3D 时尚设计。个性爆品、师生保荐各地特产、原创定制。DesignStore)等的创新创业参赛项目报告。 报告内容应包括项目背景、项目/团队介绍、项目开发过程、关键数据、创新创业点难点、项目成果演示与收益介绍、应用情况、评价分析、教学创新创业应用等。 报告形式不限,包括但不限于文字、图片、图表、视频、数据/数字模型/程序代码等。
Т5	工业互联网与大数据教学创新应用	 大数据采集、数据挖掘分析与决策、工业应用结合/设备物联、工业过程监控管理、工业互联网、工业大数据与3D可视化应用展示 报告内容应包括项目背景与准备,全流程实操记录,过程节点数据,结果与报告,分析与点评、创新应用等。 报告形式不限,包括但不限于文字、图片、图表、视频、数据/数字模型/程序代码等。
Т6	工业 3D 视觉+智能制造教学创新应用	 以高精度 3D 视觉技术助力智能制造为核心应用,推动产品创新、技术创新和商业模式创新(包括:工业在线检测、高精度 2D/3D 融合测量、深度测量与深度学习融合、智能产线应用等)。 报告内容应包括项目背景、原理流程、项目开发过程、关键数据、创新点难点、项目成果介绍演示、应用情况、评价分析、教学创新应用等。 报告形式不限,包括但不限于文字、图片、图表、视频、数据/数字模型/程序代码等。

- 7.5. 按省/直辖市/自治区组织赛区,各赛区组织现场操作/答辩评审或线上评审,选拔产生一、二、三等奖等赛区各奖项。
- 7.6. 大赛组委会与专家委员会按各赛区参赛数量与参赛项目质量,为各赛区分配全国总决赛(国赛)的入围资格名额。
- 7.7. 省/直辖市/自治区赛区赛区选拔时间为9月-10月。各赛区组委会具体办法另行通知。

8. 全国现场总决赛

8.1. 全国总决赛时间: 12月。

8.2. 全国总决赛采用现场操作+项目报告+答辩评审等组合方式进行:

序号	赛项	现场竞赛办法	评分标准	
	3D设计与3D 打印教学创 新应用	竞赛方式:现场操作+现场报告 +答辩评审。现场操作:现场完成面向课程/	应用全流程 的完整度	40%
		专业/实践教学或行业专业应 用的 3D 扫描-逆向工程-再创	创新应用性 (可实现性)	20%
		新设计-3D 打印-3D 检测等三 维数字化应用,完成现场报告 (240 分钟)。	每个单项完成的 效果/实现结果	20%
T1		● 现场答辩评审:说课(2分钟) +项目介绍(3分钟)+现场操 作报告讲解(5分钟)+评审问	项目报告与文档	10%
		辩(5分钟)。 报告内容应包括项目背景与准备,全流程实操记录,过程节点数据,结果与报告,分析与点评、教学创新应用等。 ● 报告形式不限,包括但不限于文字、图片、图表、视频、数据/数字模型/程序代码等。	现场演示与答辩	10%
		● 竞赛方式: 现场 MR 内容调试及 发布(120 分钟)+说课与现场 展示介绍(10 分钟)+评审问	提交项目报告 与资料	40%
T2	MR 混合现实 教学设计与 创新 用	辩(5分钟)。 ● 面向专业课程教学设计、MR课程资源制作、MR交互制作、MR	现场 MR 内容调 试及发布	30%
		发布等应用现场制作。 ● 现场说课演示内容应包括课程 项目设计书、项目开发过程、	专业课程教学 创新应用	20%
		关键数据、创新点难点、项目成果介绍演示、MR 应用情况、评价分析、教学创新应用等。 ● 报告形式不限,包括但不限于文字、图片、图表、视频、数据/数字模型/程序代码等。	现场展示与答辩	10%
Т3	科研项目/ 行业应用的 3D/XR 数字	● 竞赛方式:说课(2分钟)+项目介绍(3分钟)+现场演示(5分钟)+评审问辩(5分钟)。	项目创新度	20%

	化虚拟仿真 开发与应用	● 3D/VR/AR 数字化虚拟仿真项目开发与应用、VR/AR 软/硬件交互系统与平台项目创新应用、VR/AR 产品/设备项目开发	项目技术难度	20%
		应用等的参赛项目报告与介绍 演示。 • 项目报告及现场介绍演示内容	项目实用价值度	30%
		应包括项目背景、原理流程、 项目开发过程、关键数据、源 代码、创新点难点、项目成果 介绍演示、应用情况、评价分 析、教学创新应用等。	项目报告与文档	15%
		报告形式不限,包括但不限于 文字、图片、图表、视频、数据/数字模型/程序代码等。	现场演示与答辩	15%
		● 竞赛方式:说课(2分钟)+项目介绍(3分钟)+现场演示(5分钟)+评审问辩(5分钟)。	项目创新度	20%
		新零售·新设计·新制造模式 下创意/创造/创新/创业团队 项目发布与协同应用(包括: 3D时尚设计·个性爆品、师生	项目技术难度	20%
T4	3D/VR 新零 售电商创新 创业应用	保 荐 各 地 特 产 、 原 创 定 制 • DesignStore)等的创新创业参赛项目报告与介绍演示。 ■ 报告内容应包括项目背景、项目/团队介绍、项目开发过程、	项目实用价值度	30%
		关键数据、创新创业点难点、项目成果演示与收益介绍、应用情况、评价分析、教学创新创业应用等。	项目报告与文档	15%
		报告形式不限,包括但不限于 文字、图片、图表、视频、数据/数字模型/程序代码等。	现场演示与答辩	15%
		● 竞赛方式: 说课(2分钟)+项目介绍(3分钟)+现场演示(5	项目创新度	20%
T5	工业互联网/大数据创新应用	分钟)+评审问辩(5分钟)。 ◆ 大数据采集、数据挖掘分析与 决策、工业应用结合/设备物	 项目技术难度 	20%
	W11 /	联、工业过程监控管理、工业 互联网应用展示等的参赛项目 报告与介绍演示。	项目实用价值度	30%

		● 报告内容应包括项目背景、原理流程、项目开发过程、关键数据、创新点难点、项目成果	项目报告与文档	15%
		介绍演示、应用情况、评价分析、教学创新应用等。 ● 报告形式不限,包括但不限于文字、图片、图表、视频、数据/数字模型/程序代码等。	现场演示与答辩	15%
		● 竞赛方式: 说课(2分钟)+项目介绍(3分钟)+现场演示(5分钟)+评审问辩(5分钟)。	项目创新度	20%
		● 以高精度 3D 视觉技术助力智 能制造为核心应用:包括工业 在线检测、高精度 2D/3D 融合	项目技术成熟度	20%
Т6	工业3D视觉+智能制造教学创新应用	程线检测、高桶及 2D/3D 融合 测量、深度测量与深度学习融 合、智能产线应用等参赛项目 报告与介绍演示。	项目实用价值度	30%
		● 报告内容应包括项目背景、原理流程、项目开发过程、关键数据、创新点难点、项目成果	项目报告与文档	15%
		介绍演示、应用情况、评价分析、教学创新应用等。 ● 报告形式不限,包括但不限于文字、图片、图表、视频、数据/数字模型/程序代码等。	现场演示与答辩	15%

8.3. 由大赛组委会与专家委员会组织评审专家团进行现场评审,最终产生全国总决赛一二三等奖等各奖项。

9. 相关条款

- 9.1. 鼓励跨界融合创新、鼓励多元创新应用。
- 9.2. 参赛团队身份信息以赛项报名表(所在学校/院系盖章)为准。
- 9.3. 参赛团队必须承诺真实并独立完成项目、并参加赛项。不得冒名 顶替、弄虚作假,如发现,取消参赛和获奖资格,并通报批评。
- 9.4. 参赛团队应自觉遵守知识产权有关法规,不得侵犯他人的知识产权或其他权益;对于由此造成的不良后果,由参赛教师自行承担全部经济和法律责任。

- 9.5. 参赛团队拥有参赛项目(包括创意、文档、数据/代码源文件、图片、视频等)的知识产权;大赛组委会保留对参赛项目进行宣传、推广的权利,对参赛项目的其他商业使用须征得参赛团队同意。
- 9.6. 参赛团队获得的奖金(或奖品)如需缴纳税费,将由参赛团队自行承担并办理相关手续。
- 9.7. 获奖参赛团队有义务协助并配合大赛组委会做好大赛宣传、推广工作。
- 9.8. 参赛团队一经报名即代表完全接受赛项规则与竞赛办法。
- 9.9. 大赛组委会可根据实际情况对赛程、奖项设置等进行微调,调整详情都会在大赛官方网站公告。
- 9.10. 参赛团队应按分赛项要求报名参赛并提交项目报告及相关资料, 若审核后,不符合该分赛项要求,赛项组委会有权进行调剂。
- 9.11. 大赛组委会拥有"高校教师 3D/XR 数字化虚拟仿真教学创新应用大赛"最终解释权。

全国三维数字化创新设计大赛组委会 2022 年 04 月 18 日